Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499534

ABSTRACT

Simplistic models can aid in discovering what is important in the context of normal and pathological behavior. First recognized as a genetic model more than 100 years ago, to date, fruit flies (Drosophila melanogaster) still remain an astonishingly good laboratory stand-in for scientists to study development and physiology and to investigate the molecular mechanisms of human diseases. This is because fruit flies indeed represent a simplistic model. Furthermore, about 75% of human disease-related genes have their counterparts in the Drosophila genome, added to the fact that fruit flies are inexpensive and extremely easy to maintain, being invertebrates and, moreover, lacking any ethical concern issues. Purinergic signaling is, by definition, mediated by extracellular purinergic ligands, among which ATP represents the prototype molecule. A key feature that has progressively emerged when dissecting the purinergic mechanisms is the multilayer and dynamic nature of the signaling sustained by purinergic ligands. Indeed, these last are sequentially metabolized by several different ectonucleotidases, which generate the ligands that simultaneously activate several different purinergic receptors. Since significant purinergic actions have also been described in Drosophila, the aim of the present work is to provide a comprehensive picture of the purinergic events occurring in fruit flies.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Humans , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Receptors, Purinergic/genetics , Receptors, Purinergic/metabolism , Signal Transduction/physiology , Adenosine Triphosphate/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499708

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to progressive physical disability. Recent evidence has suggested that P2X7 receptor (P2X7R)-mediated purinergic signalling pathways play a role in MS-associated neuroinflammation, possibly contributing to disease pathogenesis. To evaluate possible associations between P2X7R polymorphisms and MS disease severity, we performed an association study of five non-synonymous SNPs coding variants of the P2X7R gene: rs1718119 Ala348Thr, rs2230911 Thr357Ser, rs2230912 Gln460Arg, rs3751143 Glu496Ala, and rs28360457 Arg307Gln, modulating P2X7R expression in 128 MS patients (relapsing remitting MS, RRMS: n = 94; secondary progressive, SPMS: n = 34). All patients were genotyped, and multiple sclerosis severity score (MSSS) was evaluated in every case; 189 healthy subjects were enrolled as well as controls. Results showed that P2X7R rs1718119(A) 348Thr and rs22390912(G) 464Arg, two SNPs of minor allele frequency (MAF) known to confer gain of function to the P2X7R protein, were associated with significantly higher MSSS in RRMS patients alone (SMRR (p < 0.001, p = 0.01, respectively)). Interestingly, two whole haplotypes resulted in having significant association with MSSS in these same patients. Thus: (1) the P2X7R-4 "ACGAG" haplotype, characterized by the co-presence of the rs1718119-rs2230912 AG MAF alleles, was associated with higher MSSS (Beta: 1.11 p = 0.04), and (2) the P2X7R-1 "GCAAG" complementary haplotype, which contains the rs1718119 and rs2230912 GA wild-type alleles, was more frequently carried by patients with lower MSSS and less severe disease (Beta: −1.54 p < 0.001). Although being preliminary and needing confirmation in an ampler cohort, these results suggest that 348Thr and 464Arg variants have a role as modulators of disease severity in RRMS patients.


Subject(s)
Multiple Sclerosis , Polymorphism, Single Nucleotide , Humans , Genetic Predisposition to Disease , Multiple Sclerosis/genetics , Patient Acuity , Receptors, Purinergic/genetics , Receptors, Purinergic P2X7/genetics
3.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768902

ABSTRACT

The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through "RNA-Sequencing" (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.


Subject(s)
Adenosine Triphosphate/pharmacology , Adenosine/pharmacology , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Purinergic/metabolism , Transcriptome/drug effects , Apoptosis , Biomarkers, Tumor/genetics , Calcium/metabolism , Calcium Signaling , Cell Cycle , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Extracellular Space/metabolism , Humans , Receptors, Purinergic/genetics , Tumor Cells, Cultured
4.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445644

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is considered a manifestation of metabolic syndrome (MS) and is characterized by the accumulation of triglycerides and a varying degree of hepatic injury, inflammation, and repair. Moreover, peroxisome-proliferator-activated receptors (PPARs) play a critical role in the pathophysiological processes in the liver. There is extensive evidence of the beneficial effect of polyphenols such as resveratrol (RSV) and quercetin (QRC) on the treatment of liver pathology; however, the mechanisms underlying their beneficial effects have not been fully elucidated. In this work, we show that the mechanisms underlying the beneficial effects of RSV and QRC against inflammation in liver damage in our MS model are due to the activation of novel pathways which have not been previously described such as the downregulation of the expression of toll-like receptor 4 (TLR4), neutrophil elastase (NE) and purinergic receptor P2Y2. This downregulation leads to a decrease in apoptosis and hepatic fibrosis with no changes in hepatocyte proliferation. In addition, PPAR alpha and gamma expression were altered in MS but their expression was not affected by the treatment with the natural compounds. The improvement of liver damage by the administration of polyphenols was reflected in the normalization of serum transaminase activities.


Subject(s)
Gene Expression Regulation/drug effects , Inflammation/drug therapy , Liver Cirrhosis/prevention & control , Metabolic Syndrome/complications , Quercetin/pharmacology , Receptors, Purinergic/metabolism , Resveratrol/pharmacology , Animals , Antioxidants/pharmacology , Cytokines/metabolism , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Rats , Rats, Wistar , Receptors, Purinergic/genetics
5.
Purinergic Signal ; 17(3): 481-492, 2021 09.
Article in English | MEDLINE | ID: mdl-34282551

ABSTRACT

Extracellular nucleotides act as danger signals that orchestrate inflammation by purinergic receptor activation. The expression pattern of different purinergic receptors may correlate with a pro- or anti-inflammatory phenotype. Macrophages function as pro-inflammatory M1 macrophages (M1) or anti-inflammatory M2 macrophages (M2). The present study found that murine bone marrow-derived macrophages express a unique purinergic receptor profile during in vitro polarization. As assessed by real-time polymerase chain reaction (PCR), Gαs-coupled P1 receptors A2A and A2B are upregulated in M1 and M2 compared to M0, but A2A 15 times higher in M1. The ionotropic P2 receptor P2X5 is selectively upregulated in M1- and M2-polarized macrophages. P2X7 is temporarily expressed in M1 macrophages. Metabotropic P2Y receptors showed a distinct expression profile in M1 and M2-polarized macrophages: Gαq coupled P2Y1 and P2Y6 are exclusively upregulated in M2, whereas Gαi P2Y13 and P2Y14 are overexpressed in M1. This consequently leads to functional differences between M1 and M2 in response to adenosine di-phosphate stimulation (ADP): In contrast to M1, M2 showed increased cytoplasmatic calcium after ADP stimulation. In the present study we show that bone marrow-derived macrophages express a unique repertoire of purinergic receptors. We show for the first time that the repertoire of purinergic receptors is highly flexible and quickly adapts upon pro- and anti-inflammatory macrophage differentiation with functional consequences to nucleotide stimulation.


Subject(s)
Inflammation Mediators/metabolism , Macrophages/metabolism , Receptors, Purinergic/biosynthesis , Transcriptome/physiology , Animals , Cell Polarity/physiology , Cells, Cultured , Mice , Receptors, Purinergic/genetics
6.
Purinergic Signal ; 17(3): 493-502, 2021 09.
Article in English | MEDLINE | ID: mdl-34302569

ABSTRACT

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.


Subject(s)
Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Chagas Disease/metabolism , Nitroimidazoles/administration & dosage , Receptors, Purinergic/biosynthesis , Resveratrol/administration & dosage , Acute Disease , Animals , Antioxidants/administration & dosage , Cerebral Cortex/parasitology , Chagas Disease/drug therapy , Female , Gene Expression , Immunosuppressive Agents/administration & dosage , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Receptors, Purinergic/genetics
7.
Purinergic Signal ; 17(3): 345-370, 2021 09.
Article in English | MEDLINE | ID: mdl-33982134

ABSTRACT

Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.


Subject(s)
Adenosine Triphosphate/metabolism , Autocrine Communication/physiology , Neoplasms/metabolism , Paracrine Communication/physiology , Receptors, Purinergic/metabolism , Adenosine Triphosphate/genetics , Animals , Humans , Neoplasms/genetics , Neoplasms/mortality , Receptors, Purinergic/genetics , Signal Transduction/physiology
8.
Signal Transduct Target Ther ; 6(1): 162, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33907179

ABSTRACT

Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.


Subject(s)
Apoptosis , Cell Communication , Metabolic Diseases/metabolism , Purines/metabolism , Receptors, Purinergic/metabolism , Signal Transduction , Humans , Metabolic Diseases/genetics , Receptors, Purinergic/genetics
9.
Sci Rep ; 11(1): 5192, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664289

ABSTRACT

The vesicular nucleotide transporter (VNUT) is responsible for the vesicular storage and release of ATP from various ATP-secreting cells, and it plays an essential role in purinergic signaling. Although extracellular ATP and its degradation products are known to mediate various inflammatory responses via purinoceptors, whether vesicular ATP release affects steatohepatitis and acute liver injury is far less understood. In the present study, we investigated the effects of clodronate, a potent and selective VNUT inhibitor, on acute and chronic liver inflammation in mice. In a model of methionine/choline-deficient diet-induced non-alcoholic steatohepatitis (NASH), the administration of clodronate reduced hepatic inflammation, fibrosis, and triglyceride accumulation. Clodronate also protected mice against high-fat/high-cholesterol diet-induced steatohepatitis. Moreover, prophylactic administration of clodronate prevented D-galactosamine and lipopolysaccharide-induced acute liver injury by reducing inflammatory cytokines and hepatocellular apoptosis. In vitro, clodronate inhibited glucose-induced vesicular ATP release mediated by VNUT and reduced the intracellular level and secretion of triglycerides in isolated hepatocytes. These results suggest that VNUT-dependent vesicular ATP release plays a crucial role in the recruitment of immune cells, cytokine production, and the aggravation of steatosis in the liver. Pharmacological inhibition of VNUT may provide therapeutic benefits in liver inflammatory disorders, including NASH and acute toxin-induced injury.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Clodronic Acid/pharmacology , Fatty Liver/drug therapy , Nucleotide Transport Proteins/genetics , Adenosine Triphosphate/metabolism , Animals , Chemical and Drug Induced Liver Injury/pathology , Diet/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Humans , Inflammation/drug therapy , Inflammation/etiology , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , Nucleotide Transport Proteins/antagonists & inhibitors , Receptors, Purinergic/genetics
10.
J Immunol Res ; 2021: 2695490, 2021.
Article in English | MEDLINE | ID: mdl-33532505

ABSTRACT

Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.


Subject(s)
Aluminum/adverse effects , Microglia/drug effects , Microglia/metabolism , Receptors, Purinergic/metabolism , Animals , Biomarkers , Brain/drug effects , Brain/immunology , Brain/metabolism , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression , Humans , Lipopolysaccharides/immunology , Mice , Microglia/immunology , Receptors, Purinergic/genetics
11.
Biochem Pharmacol ; 187: 114394, 2021 05.
Article in English | MEDLINE | ID: mdl-33388283

ABSTRACT

Nanobodies (VHHs) are the single variable immunoglobulin domains of heavy chain antibodies (hcAbs) that naturally occur in alpacas and other camelids. The two variable domains of conventional antibodies typically interact via a hydrophobic interface. In contrast, the corresponding surface area of nanobodies is hydrophilic, rendering these single immunoglobulin domains highly soluble, robust to harsh environments, and exceptionally easy to format into bispecific reagents. In homage to Geoffrey Burnstock, the pioneer of purinergic signaling, we provide a brief history of nanobody-mediated modulation of purinergic signaling, using our nanobodies targeting P2X7 and the NAD+-metabolizing ecto-enzymes CD38 and ARTC2.2 as examples.


Subject(s)
Antisense Elements (Genetics)/metabolism , Receptors, Purinergic/metabolism , Signal Transduction/physiology , Single-Domain Antibodies/metabolism , Amino Acid Sequence , Animals , Antisense Elements (Genetics)/administration & dosage , Antisense Elements (Genetics)/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Protein Structure, Tertiary , Purinergic Agonists/administration & dosage , Purinergic Antagonists/administration & dosage , Receptors, Purinergic/genetics , Signal Transduction/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/genetics
12.
Biochem Pharmacol ; 187: 114261, 2021 05.
Article in English | MEDLINE | ID: mdl-33011161

ABSTRACT

Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.


Subject(s)
Bacteria/metabolism , Evolution, Molecular , Invertebrates/metabolism , Plants/metabolism , Receptors, Purinergic/metabolism , Signal Transduction/physiology , Animals , Bacteria/genetics , Bacterial Physiological Phenomena , Humans , Invertebrates/genetics , Plants/genetics , Receptors, Purinergic/genetics , Receptors, Purinergic P1/genetics , Receptors, Purinergic P1/metabolism
13.
Arch Toxicol ; 95(1): 229-252, 2021 01.
Article in English | MEDLINE | ID: mdl-33269408

ABSTRACT

Prediction of drug toxicity on the human nervous system still relies mainly on animal experiments. Here, we developed an alternative system allowing assessment of complex signaling in both individual human neurons and on the network level. The LUHMES cultures used for our approach can be cultured in 384-well plates with high reproducibility. We established here high-throughput quantification of free intracellular Ca2+ concentrations [Ca2+]i as broadly applicable surrogate of neuronal activity and verified the main processes by patch clamp recordings. Initially, we characterized the expression pattern of many neuronal signaling components and selected the purinergic receptors to demonstrate the applicability of the [Ca2+]i signals for quantitative characterization of agonist and antagonist responses on classical ionotropic neurotransmitter receptors. This included receptor sub-typing and the characterization of the anti-parasitic drug suramin as modulator of the cellular response to ATP. To exemplify potential studies on ion channels, we characterized voltage-gated sodium channels and their inhibition by tetrodotoxin, saxitoxin and lidocaine, as well as their opening by the plant alkaloid veratridine and the food-relevant marine biotoxin ciguatoxin. Even broader applicability of [Ca2+]i quantification as an end point was demonstrated by measurements of dopamine transporter activity based on the membrane potential-changing activity of this neurotransmitter carrier. The substrates dopamine or amphetamine triggered [Ca2+]i oscillations that were synchronized over the entire culture dish. We identified compounds that modified these oscillations by interfering with various ion channels. Thus, this new test system allows multiple types of neuronal signaling, within and between cells, to be assessed, quantified and characterized for their potential disturbance.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Nerve Net/drug effects , Neurons/drug effects , Neurotoxicity Syndromes/etiology , Action Potentials/drug effects , Cells, Cultured , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , High-Throughput Screening Assays , Humans , Nerve Net/metabolism , Nerve Net/pathology , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Patch-Clamp Techniques , Receptors, Purinergic/drug effects , Receptors, Purinergic/genetics , Receptors, Purinergic/metabolism , Time Factors , Toxicity Tests , Voltage-Gated Sodium Channels/drug effects , Voltage-Gated Sodium Channels/metabolism
14.
Mol Ther ; 29(3): 1151-1163, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33160074

ABSTRACT

Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3-7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.


Subject(s)
Cell Differentiation , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Receptors, Purinergic P2/metabolism , Receptors, Purinergic/metabolism , Animals , Cell Proliferation , Cells, Cultured , Humans , Mice , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Receptors, Purinergic/chemistry , Receptors, Purinergic/genetics , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics
15.
Physiol Rev ; 101(2): 545-567, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33124941

ABSTRACT

Evolving information has identified disease mechanisms and dysregulation of host biology that might be targeted therapeutically in coronavirus disease 2019 (COVID-19). Thrombosis and coagulopathy, associated with pulmonary injury and inflammation, are emerging clinical features of COVID-19. We present a framework for mechanisms of thrombosis in COVID-19 that initially derive from interaction of SARS-CoV-2 with ACE2, resulting in dysregulation of angiotensin signaling and subsequent inflammation and tissue injury. These responses result in increased signaling by thrombin (proteinase-activated) and purinergic receptors, which promote platelet activation and exert pathological effects on other cell types (e.g., endothelial cells, epithelial cells, and fibroblasts), further enhancing inflammation and injury. Inhibitors of thrombin and purinergic receptors may, thus, have therapeutic effects by blunting platelet-mediated thromboinflammation and dysfunction in other cell types. Such inhibitors include agents (e.g., anti-platelet drugs) approved for other indications, and that could be repurposed to treat, and potentially improve the outcome of, COVID-19 patients. COVID-19, caused by the SARS-CoV-2 virus, drives dysregulation of angiotensin signaling, which, in turn, increases thrombin-mediated and purinergic-mediated activation of platelets and increase in inflammation. This thromboinflammation impacts the lungs and can also have systemic effects. Inhibitors of receptors that drive platelet activation or inhibitors of the coagulation cascade provide opportunities to treat COVID-19 thromboinflammation.


Subject(s)
COVID-19/complications , Inflammation/etiology , Receptors, Proteinase-Activated/metabolism , Receptors, Purinergic/metabolism , SARS-CoV-2 , Thrombosis/etiology , Humans , Inflammation/drug therapy , Purinergic Antagonists/pharmacology , Receptors, Proteinase-Activated/antagonists & inhibitors , Receptors, Proteinase-Activated/genetics , Receptors, Purinergic/genetics , Thrombosis/prevention & control
16.
Viruses ; 12(3)2020 03 07.
Article in English | MEDLINE | ID: mdl-32155980

ABSTRACT

Purinergic receptors are inflammatory mediators activated by extracellular nucleotides released by dying or injured cells. Several studies have described an important role for these receptors in HIV-1 entry, particularly regarding their activity on HIV-1 viral membrane fusion. Several reports identify purinergic receptor antagonists that inhibit HIV-1 membrane fusion; these drugs are suspected to act through antagonizing Env-chemokine receptor interactions. They also appear to abrogate activity of downstream mediators that potentiate activation of the NLRP3 inflammasome pathway. Here we review the literature on purinergic receptors, the drugs that inhibit their function, and the evidence implicating these receptors in HIV-1 entry.


Subject(s)
HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Receptors, Purinergic/metabolism , Virus Internalization , Biomarkers , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , Humans , Multigene Family , Receptors, Purinergic/genetics , Signal Transduction
18.
Article in English | MEDLINE | ID: mdl-31678483

ABSTRACT

Zebrafish (Danio rerio) has been considered a complementary model for biomedical studies, especially due to advantages such as external and rapid development, and genetic manipulation. There is growing interest in this model in neuroscience research since the species has morphological and physiological similarities to mammals and a complex behavioral repertoire. The purinergic signaling has been described in zebrafish, and purinoceptors and nucleotide- and nucleoside-metabolizing enzymes have already been identified in the central nervous system (CNS) of this species. The involvement of the purinergic system in several models of neurological disorders, such as Alzheimers disease, Parkinson's disease, epilepsy, schizophrenia, and autism has been investigated in zebrafish. This mini review presents several studies describing purinergic signaling in the zebrafish CNS and the action of this neurotransmitter system in models of neurological disorders using this species as a biological model. The use of pharmacological approaches at different stages of development may be a useful tool for preclinical assays and the testing of purinergic compounds as new alternatives for the treatment of neurological disorders.


Subject(s)
Nervous System Diseases/genetics , Nervous System Diseases/physiopathology , Receptors, Purinergic/genetics , Signal Transduction , Zebrafish/physiology , Animals , Disease Models, Animal , Humans
19.
Methods Mol Biol ; 2041: 77-86, 2020.
Article in English | MEDLINE | ID: mdl-31646481

ABSTRACT

RNA interference (RNAi) is a powerful post-transcriptional gene silencing (PTGS) induced by small double-stranded RNA (dsRNA). The method allows silencing of genes of interest by translation inhibition or by mRNA degradation. In this chapter, we provide a brief overview of the mechanisms involved in each step of gene silencing. A nonviral infusion of short siRNA into ventricular system of rats was used to study purinoceptor in the rat brain.


Subject(s)
Gene Silencing , RNA Interference , RNA, Small Interfering/genetics , Receptors, Purinergic/chemistry , Animals , Rats , Receptors, Purinergic/genetics , Signal Transduction
20.
Methods Mol Biol ; 2041: 87-106, 2020.
Article in English | MEDLINE | ID: mdl-31646482

ABSTRACT

Xenopus embryos are one of the most used animal models in developmental biology and are well suited for apprehending functions of signaling pathways during embryogenesis. To do so, it is necessary to be able to detect expression pattern of the key genes of these signaling pathways. Here we describe the whole-mount in situ hybridization technique to investigate the expression pattern of ectonucleotidases and purinergic receptors during embryonic development.


Subject(s)
5'-Nucleotidase/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , In Situ Hybridization/methods , Receptors, Purinergic/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , 5'-Nucleotidase/genetics , Animals , Embryo, Nonmammalian/cytology , Embryonic Development , Female , RNA Probes , Receptors, Purinergic/genetics , Signal Transduction , Xenopus Proteins/genetics , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...